YOLOv8 도로 표지판, 신호등 검출
2024. 3. 17. 14:28ㆍ파이썬
0. 환경설정(python = 3.8.8)
!pip install ultralytics
!pip install opencv-python
!pip install matplotlib
pip3 install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio===0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
import ultralytics
ultralytics.checks() #설치 확인
1. 데이터 준비
Road Sign Detection (kaggle.com)
import xml.etree.ElementTree as ET
import glob
import os
import json
from tqdm import tqdm
def xml_to_yolo_bbox(bbox, w, h):
# xmin, ymin, xmax, ymax
x_center = ((bbox[2] + bbox[0]) / 2) / w
y_center = ((bbox[3] + bbox[1]) / 2) / h
width = (bbox[2] - bbox[0]) / w
height = (bbox[3] - bbox[1]) / h
return [x_center, y_center, width, height]
road_sign_root = 'C:/Users/coghk/Desktop/vision/yolo/dataset/road_sign_detection'
annot_path = os.path.join(road_sign_root,"annotations")
img_path = os.path.join(road_sign_root,"images")
label_path = os.path.join(road_sign_root,"labels")
if not os.path.exists(label_path):
os.makedirs(label_path)
classes = []
files = glob.glob(os.path.join(annot_path, '*.xml'))
for fil in tqdm(files):
basename = os.path.basename(fil)
filename = os.path.splitext(basename)[0]
result = []
tree = ET.parse(fil)
root = tree.getroot()
width = int(root.find("size").find("width").text)
height = int(root.find("size").find("height").text)
for obj in root.findall('object'):
label = obj.find("name").text
if label not in classes:
classes.append(label)
index = classes.index(label)
pil_bbox = [int(x.text) for x in obj.find("bndbox")]
yolo_bbox = xml_to_yolo_bbox(pil_bbox, width, height)
bbox_string = " ".join([str(x) for x in yolo_bbox])
result.append(f"{index} {bbox_string}")
if result:
with open(os.path.join(label_path, f"{filename}.txt"), "w", encoding="utf-8") as f:
f.write("\n".join(result))
1.2 데이터 전처리
cd ../dataset #데이터 셋 경로
import os
import random
from shutil import copyfile, rmtree
road_sign_path = '../dataset/road_sign_detection' #저장경로
label_ = '.txt'
img_ = '.png'
# 저장 경로 만들기
folder_list = ['road_sign_detection/train', 'road_sign_detection/val', 'road_sign_detection/train/images', \
'road_sign_detection/train/labels', 'road_sign_detection/val/images', 'road_sign_detection/val/labels']
for folder in folder_list:
if not os.path.exists(folder):
os.makedirs(folder)
file_list = os.listdir(os.path.join(road_sign_path, 'images'))
random.shuffle(file_list)
test_ratio = 0.1
test_list = file_list[:int(len(file_list)*test_ratio)]
train_list = file_list[int(len(file_list)*test_ratio):]
print(f"train의 개수 : {len(train_list)}, test의 개수 : {len(test_list)}")
for i in test_list:
f_name = os.path.splitext(i)[0]
copyfile(os.path.join(road_sign_path, 'images', (f_name+img_)), os.path.join(road_sign_path, 'val/images', (f_name+img_)))
copyfile(os.path.join(road_sign_path, 'labels', (f_name+label_)), os.path.join(road_sign_path, 'val/labels', (f_name+label_)))
for i in train_list:
f_name = os.path.splitext(i)[0]
copyfile(os.path.join(road_sign_path, 'images', (f_name+img_)), os.path.join(road_sign_path, 'train/images', (f_name+img_)))
copyfile(os.path.join(road_sign_path, 'labels', (f_name+label_)), os.path.join(road_sign_path, 'train/labels', (f_name+label_)))
1.3 config file 생성
import yaml
data =dict()
data['train'] = 'C:/Users/coghk/Desktop/vision/yolo/dataset/road_sign_detection/train'
data['val'] = 'C:/Users/coghk/Desktop/vision/yolo/dataset/road_sign_detection/val'
data['test'] = 'C:/Users/coghk/Desktop/vision/yolo/dataset/road_sign_detection/val'
data['nc'] = 4
data['names'] =['Trafic_light','Speedlimit', 'Crosswalk','Stop']
with open('road_sign.yaml', 'w') as f:
yaml.dump(data, f)
2. train
from ultralytics import YOLO
model = YOLO('yolov8s.yaml')
results = model.train(data ='road_sign.yaml', epochs = 100, batch=32,device = 0 , patience=30, name='road_sign_s')
3. test(validation)
from ultralytics import YOLO
# Load a model
model_path = 'road_sign_detection.pt' #가중치 모델 경로
model = YOLO(model_path) # load a custom model
# Validate the model
metrics = model.val() # no arguments needed, dataset and settings remembered
print("map50-95", metrics.box.map)
print("map50", metrics.box.map50)
4. inference
from ultralytics import YOLO
import cv2
import os
%matplotlib inline
from ultralytics.utils.plotting import Annotator
import matplotlib.pyplot as plt
import numpy as np
model_path = 'C:/Users/coghk/Desktop/vision/yolo/weight/road_sign_detection.pt'
model = YOLO(model_path)
root_folder = 'val/images'
result_folder = 'result'
if not os.path.exists(result_folder):
os.makedirs(result_folder)
test_img_list = os.listdir(root_folder)
device = 'cpu'
color_dict = [(0, 255, 0),(255, 255, 0),(0, 0, 255), (255, 0,0)] #검출 박스 색상
color_dict_2 = [(0, 0, 0),(0, 0, 0),(255, 255, 255), (255, 255,255)] #글자 색상
test_img = cv2.imread(os.path.join(root_folder, test_img_list[0]))
img_src = cv2.cvtColor(test_img, cv2.COLOR_BGR2RGB)
results = model(test_img)
for result in results:
annotator = Annotator(img_src)
boxes = result.boxes
for box in boxes:
b = box.xyxy[0] # get box coordinates in (top, left, bottom, right) format
cls = box.cls
annotator.box_label(b, model.names[int(cls)], color_dict[int(cls)], color_dict_2[int(cls)])
img_src = annotator.result()
plt.imshow(img_src)
plt.show()
for idx , file in enumerate(test_img_list):
test_img = cv2.imread(os.path.join(root_folder, file))
img_src = cv2.cvtColor(test_img, cv2.COLOR_BGR2RGB)
results = model(test_img)
for result in results:
annotator = Annotator(img_src)
boxes = result.boxes
for box in boxes:
b = box.xyxy[0] # get box coordinates in (top, left, bottom, right) format
cls = box.cls
annotator.box_label(b, model.names[int(cls)], color_dict[int(cls)],color_dict_2[int(cls)])
img_src = annotator.result()
img_src = cv2.resize(img_src, (400,400))
cv2.imwrite(os.path.join(result_folder, file), cv2.cvtColor(img_src, cv2.COLOR_RGB2BGR))
#나머지 테스트 파일들도 전부 다 검출
'파이썬' 카테고리의 다른 글
건물 영역 검출 - DeepLabV3+ (0) | 2024.04.16 |
---|---|
complex-YOLO 3D object Detection on Point Clouds (0) | 2024.04.01 |
YOLO v8을 이용한 마스크 검출 (0) | 2024.03.17 |
facelandmark - 황금 비율 측정(PFLD) (0) | 2024.02.25 |
face dection-Retina face, Dlib (0) | 2024.02.24 |